A Potential Threat for Blackberry, Raspberry and Rosehip Growing in Konya Province: Fire Blight Disease

Aysun Öztürk, Kubilay Kurtulus Bastas

Abstract


In the present study, totally 49 samples, which showed the symptoms of leaf and shoot blight and cankers with brown discoloration of necrotic tissues on mature branches, were collected from 22 districts and areas of Konya Province between 2017 and 2019. Presence rate of E. amylovora in collected samples, showing symptoms of the disease, from the province was determined to be 40% for blackberry and raspberry and 33% rosehip for rosehip in three years. Bacteria consistently isolated from the diseased tissues were identified on the basis of biochemical, physiological, and molecular tests, comparing with a reference strain of E. amylovora, isolated from blackberry (Kbb 371). Twenty seven representative bacterial strains were gram-negative, rod-shaped, mucoid, fermentative, positive for levan formation and acetoin production, no growth at 36°C, positive for gelatin hydrolysis, and negative for esculin hydrolysis, indole, urease, catalase, oxidase, arginine dehydrolase, reduction of nitrate, acid production from lactose, and inositol. All strains induced a hypersensitive response in tobacco (Nicotiana tobacum cv. White Burley) 24 h after inoculation with a 108 CFU ml-1 bacterial suspension in sterile distilled water. The strains were identified as E. amylovora using the species-specific primers set A/B (1), which amplified a 1-kb DNA fragment in PCR, and the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method. In order to fulfill the Koch postulates, pathogenicity test was confirmed by injecting bacterial suspensions of 108 CFU ml-1 in sterile distilled water into the shoot tips of 3-year-old blackberry R. fruticosus cv. Chester, raspberry R. idaeus cv. Heritage and rosehip R. canina. All tests were repeated three times. The bacterium was re-isolated from inoculated plants and identified as E. amylovora. Phytosanitary measures are needed to prevent any further spread of the bacterium as potential inoculum sources to new blackberry, raspberry and rosehip growing areas.

Keywords


Fire blight; Blackberry; Raspberry; Rosehip; Phytosanitary

Full Text:

PDF (Türkçe)


DOI: https://doi.org/10.24925/turjaf.v9isp.2663-2669.4932

 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License

ISSN: 2148-127X

Turkish JAF Sci.Tech.

Turkish Journal of Agriculture - Food Science and Technology (TURJAF) is indexed by the following national and international scientific indexing services:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Our Journals

Turkish Journal of Agriculture - Food Science and Technology

International Journal of Poultry - Ornamental Birds Science and Technology

Turkish Research Journal of Academic Social Science

Turkish Research Journal of Academic Technical Science

Turkish Research Journal of Academic Health and Medical Sciences

Our congresses

International Anatolian Agriculture, Food, Environment and Biology Congress (TARGID)

International Congress of the Turkish Journal of Agriculture - Food Science and Technology (TURJAF)

Our Youtube Channel

TURAS TV

Our Books

Our Scientific Books

About Us

The Turkish Science and Technology Publishing (TURSTEP) is an online and open-access platform to publish recent research and articles of scholars worldwide. Founded in 2013 and based in Turkey, the TURSTEP as a platform for academics, educators, scholars, and students from Turkey and around the world, to connect with one another. The TURSTEP disseminates research that is proven or predicted to be of significant influence for the general public.

       

Contact Us

Please send all inquiries to the email:

teditor@agrifoodscience.com

Business Adress

Eğriköprü mh. Pilot Kaya İstektepe Cad. 9/1 BLOK Daire 7, 58050 Merkaz/Sivas, Turkey